On rigidity of Grauert tubes over Riemannian manifolds of constant curvature

نویسندگان

  • Su-Jen Kan
  • Daowei Ma
  • S.-J. Kan
  • D. Ma
چکیده

It is well-known that a real analytic manifold X admits a complexification XC , a complex manifold that contains X as the fixed point set of an antiholomorphic involution. This can be seen as follows.The transition functions defining the manifold X are real-analytic local diffeomorphisms of Rn. The Taylor expansions of these transition functions can be considered as local biholomorphisms of Cn, hence they serve as transition functions of a complex manifold. The germ of the complexification XC is unique. Every sufficiently small tubular neighborhood Ω of X in the tangent bundle TX admits a real analytic diffeomorphism into XC that fixes X . Therefore a sufficiently small tubular neighborhood ofX in TX has a complex structure and can be considered as a complexification of X . In general the complex structure on the tubular neighborhood is not unique since there are manyways to embed it intoXC . There have been a lot of interest in finding canonical complex structures on tubular neighborhoods ofX in TX . With additional datum of a real analytic Riemannian metric g on X a canonical complex structure can be specified for sufficiently small tubular neighborhoods Ω of X in TX (see [GS, LS, S1]). There is a unique complex structure on Ω such that the map f(σ + iτ) = (τγ′(σ))γ(σ), σ + iτ ∈ C, is holomorphic, wherever it is defined,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Rigidity of Grauert Tubes

Given a real-analytic Riemannian manifold M there exists a canonical complex structure on part of its tangent bundle which turns leaves of the Riemannian foliation on TM into holomorphic curves. A Grauert tube over M of radius r, denoted as T rM , is the collection of tangent vectors of M of length less than r equipped with this canonical complex structure. We say the Grauert tube T rM is rigid...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Finsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature

The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...

متن کامل

Global Rigidity of Holomorphic Riemannian Metrics on Compact Complex 3-manifolds

We study compact complex 3-manifolds admitting holomorphic Riemannian metrics. We prove a uniformization result: up to a finite unramified cover, such a manifold admits a holomorphic Riemannian metric of constant sectionnal curvature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002